Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 140
1.
Sci Rep ; 14(1): 9369, 2024 04 23.
Article En | MEDLINE | ID: mdl-38653774

Human pharmaceuticals represent a major challenge in natural environment. A better knowledge on their mechanisms of action and adverse effects on cellular pathways is fundamental to predict long-term consequences for marine wildlife. The FTIRI Imaging (FTIRI) spectroscopy represents a vibrational technique allowing to map specific areas of non-homogeneous biological samples, providing a unique biochemical and ultrastructural fingerprint of the tissue. In this study, FTIRI technique has been applied, for the first time, to characterize (i) the chemical building blocks of digestive glands of Mytilus galloprovincialis, (ii) alterations and (iii) resilience of macromolecular composition, after a 14-days exposure to 0.5 µg/L of carbamazepine (CBZ), valsartan (VAL) and their mixture, followed by a 14-days recovery period. Spectral features of mussels digestive glands provided insights on composition and topographical distribution of main groups of biological macromolecules, such as proteins, lipids, and glycosylated compounds. Pharmaceuticals caused an increase in the total amount of protein and a significant decrease of lipids levels. Changes in macromolecular features reflected the modulation of specific molecular and biochemical pathways thus supporting our knowledge on mechanisms of action of such emerging pollutants. Overall, the applied approach could represent an added value within integrated strategies for the effects-based evaluation of environmental contaminants.


Digestive System , Mytilus , Water Pollutants, Chemical , Animals , Mytilus/drug effects , Mytilus/metabolism , Water Pollutants, Chemical/toxicity , Digestive System/drug effects , Digestive System/metabolism , Macromolecular Substances , Carbamazepine/pharmacology , Spectroscopy, Fourier Transform Infrared , Bivalvia/drug effects , Bivalvia/chemistry
2.
Chemosphere ; 358: 141908, 2024 Apr 12.
Article En | MEDLINE | ID: mdl-38615948

Rare earth elements (REEs) are increasingly being studied mainly due to their economic importance and wide range of applications, but also for their rising environmental concentrations and potential environmental and ecotoxicological impacts. Among REEs, neodymium (Nd) is widely used in lasers, glass additives, and magnets. Currently, NdFeB-based permanent magnets are the most significant components of electronic devices and Nd is used because of its magnetic properties. In addition to REEs, part of the environmental pollution related to electrical and electronic equipment, fluorescent lamps and batteries also comes from mercury (Hg). Since both elements persist in ecosystems and are continuously accumulated by marine organisms, a promising approach for water decontamination has emerged. Through a process known as sorption, live marine macroalgae can be used, especially Ulva lactuca, to accumulate potential toxic elements from the water. Therefore, the present study aimed to evaluate the cellular toxicity of Nd and Hg in Mytilus galloprovincialis, comparing the biochemical effects induced by these elements in the presence or absence of the macroalgae U. lactuca. The results confirmed that Hg was more toxic to mussels than Nd, but also showed the good capability of U. lactuca in preventing the onset of cellular disturbance and homeostasis disruption in M. galloprovincialis by reducing bioavailable Hg levels. Overall, the biochemical parameters evaluated related to metabolism, antioxidant and biotransformation defences, redox balance, and cellular damage, showed that algae could prevent biological effects in mussels exposed to Hg compared to those exposed to Nd. This study contributes to the advancement of knowledge in this field, namely the understanding of the impacts of different elements on bivalves and the crucial role of algae in the protection of other aquatic organisms.

3.
J Hazard Mater ; 471: 134220, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38636232

The presence in marine shellfish of toxins and pollutants like rare earth elements (REEs) poses a major threat to human well-being, coastal ecosystems, and marine life. Among the REEs, neodymium (Nd) stands out as a widely utilized element and is projected to be among the top five critical elements by 2025. Gymnodinum catenatum is a phytoplankton species commonly associated with the contamination of bivalves with paralytic shellfish toxins. This study evaluated the biological effects of Nd on the mussel species Mytilus galloprovincialis when exposed to G. catenatum cells for fourteen days, followed by a recovery period in uncontaminated seawater for another fourteen days. After co-exposure, mussels showed similar toxin accumulation in the Nd and G. catenatum treatment in comparison with the G. catenatum treatment alone. Increased metabolism and enzymatic defenses were observed in organisms exposed to G. catenatum cells, while Nd inhibited enzyme activity and caused cellular damage. Overall, this study revealed that the combined presence of G. catenatum cells and Nd, produced positive synergistic effects on M. galloprovincialis biochemical responses compared to G. catenatum alone, indicating that organisms' performance may be significantly modulated by the presence of multiple co-occurring stressors, such those related to chemical pollution and harmful algal blooms. ENVIRONMENTAL IMPLICATIONS: Neodymium (Nd) is widely used in green technologies like wind turbines, and this element's potential threats to aquatic environments are almost unknown, especially when co-occurring with other environmental factors such as blooms of toxic algae. This study revealed the cellular impacts induced by Nd in the bioindicator species Mytilus galloprovincialis but further demonstrated that the combination of both stressors can generate a positive defense response in mussels. The present findings also demonstrated that the impacts caused by Nd lasted even after a recovery period while a previous exposure to the toxins generated a faster biochemical improvement by the mussels.


Mytilus , Neodymium , Animals , Mytilus/drug effects , Neodymium/toxicity , Dinoflagellida/drug effects , Dinoflagellida/metabolism , Marine Toxins/toxicity , Harmful Algal Bloom , Water Pollutants, Chemical/toxicity
4.
Chemosphere ; 352: 141413, 2024 Mar.
Article En | MEDLINE | ID: mdl-38336037

The marine microalgae Ostreopsis cf. ovata are a well-known producer of palytoxin (PlTXs) analogues, i.e. ovatoxins (OVTXs) among others, which arouse concern for animal and human health. Both in field and laboratory studies, presence of OVTXs, detected in species directly feeding on O. cf. ovata, was frequently correlated with impairment on organisms' physiology, development and behaviour, while similar knowledge is still lacking for animals feeding on contaminated preys. In this study, transfer and toxicity of OVTXs were evaluated in an exposure experiment, in which gilthead seabream Sparus aurata was fed with bivalve mussel Mytilus galloprovincialis, contaminated by a toxic strain of O. cf. ovata. Mussels exposed to O. cf. ovata for 21 days accumulated meanly 188 ± 13 µg/kg OVTXs in the whole tissues. Seabreams fed with OVTX-contaminated mussels started to reject the food after 6 days of contaminated diet. Although no detectable levels of OVTXs were measured in muscle, liver, gills and gastro-intestinal tracts, the OVTX-enriched diet induced alterations of lipid metabolism in seabreams livers, displaying a decreased content of total lipid and fatty acid, together with overexpression of fatty acid biosynthetic genes, downregulation of ß-oxidation genes and modulation of several genes related to lipid transport and regulation. Results from this study would suggest the hypothesis that OVTXs produced by O. cf. ovata may not be subject to bioaccumulation in fish fed on contaminated preys, being however responsible of significant biological effects, with important implications for human consumption of seafood products.


Dinoflagellida , Mytilus , Sea Bream , Animals , Humans , Marine Toxins/toxicity , Lipid Metabolism , Seafood , Dinoflagellida/genetics , Fatty Acids , Lipids
5.
Environ Pollut ; 344: 123327, 2024 Mar 01.
Article En | MEDLINE | ID: mdl-38190878

The definition of microplastics (MPs) is nowadays too generic from a biological perspective, since different characteristics of these particles might influence their effects. To provide experimental evidence that size is an important factor to be considered, Mediterranean mussels Mytilus galloprovincialis were exposed to five size classes of polyethylene fragments (PE-MPs, 20-50 µm, 50-100 µm, 100-250 µm, 250-500 µm, 500-1000 µm). After 10 days of exposure, MPs ingestion and mechanistic relationships between particles size and cellular effects were analysed through a wide panel of biological alterations, including immune system responses, cholinergic function, antioxidant system, lipid metabolism and peroxidation. Results were further elaborated through a Weight of Evidence approach, summarizing the overall biological significance of obtained results in a hazard index based on the number and magnitude of variations and their toxicological relevance. PE-MPs 500-1000 µm were identified as the less biologically reactive size class due to the limited ingestion of particles coupled with the lack of biological effects, followed by PE-MPs 250-500 µm, which slightly altered the cholinergic function and lysosomal membranes. Conversely, PE-MPs smaller than 250 µm provoked a more consistent onset of biological alterations in terms of immune system composition and functioning, redox homeostasis, and lipid metabolism. The overall findings of this study highlight the importance of considering the size of particles for monitoring and risk assessment of MPs, introducing a more integrated evaluation of plastic pollution that, beside particles concentration, should adequately weigh those characteristics triggering the onset of biological effects.


Mytilus , Water Pollutants, Chemical , Animals , Microplastics/analysis , Plastics/analysis , Mytilus/metabolism , Polyethylene/metabolism , Cholinergic Agents/metabolism , Cholinergic Agents/pharmacology , Water Pollutants, Chemical/analysis
6.
Environ Sci Pollut Res Int ; 31(12): 17617-17633, 2024 Mar.
Article En | MEDLINE | ID: mdl-36719589

Highly anthropized areas as ports represent complex scenarios that require accurate monitoring plans aimed to address the environmental status. In this context, the activities of the EU Interreg Project "GEstione dei REflui per il MIglioramento delle Acque portuali (GEREMIA)" were focused on comparing sites differently affected by human presence, as the Port of Genoa and the natural area of the S'Ena Arrubia fishpond: a panel of analyses was carried out on Mugilidae fish sampled in these two areas, aimed to address trace metal accumulation in the liver, gills, and muscle, as well as cytochrome P450 (CYP450) induction in liver and biliary polycyclic aromatic hydrocarbon (PAH) metabolites, and histopathological alterations in the liver and gills. Chemical analyses in the liver, gills, and muscle of specimens collected in the port area showed an overall higher degree of trace metal contamination compared to the natural fishpond, and similar results were obtained in terms of CYP450 induction and biliary PAH metabolites, suggesting a higher exposure to organic compounds. In addition, histopathological analyses revealed a significant alteration and then a loss of functionality of liver and gill tissue in individuals from the port. Overall, this study describes the complex environmental pollution scenario in the Port of Genoa, confirming the importance of using multidisciplinary approaches and different types of analyses to address both the presence and the effects of contaminants in marine environments.


Polycyclic Aromatic Hydrocarbons , Waste Management , Water Pollutants, Chemical , Animals , Humans , Environmental Biomarkers , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis , Cytochrome P-450 CYP1A1/metabolism , Fishes/metabolism , Liver , Health Status , Polycyclic Aromatic Hydrocarbons/analysis , Gills/metabolism
7.
Toxicol Res (Camb) ; 12(5): 824-832, 2023 Oct.
Article En | MEDLINE | ID: mdl-37915497

Most organisms possess the capacity to metabolize arsenic (As) accumulating compounds to less toxic forms, thus minimizing the adverse effect induced by this metalloid. However, other contaminants may to interfere with As metabolism, contributing to the accumulation of more toxic compounds. Microplastics (MPs) are omnipresent in aquatic environment and may induce toxicological effects (alone or in combination with other contaminants) on living organisms. Therefore, the objective of the present study was to evaluate the effect of the exposure of the freshwater clam Limnoperna fortunei to a combination of MP (4 and 40 µg/L of polystyrene microbeads, 1.05 µm) and As (50 µg/L) for 48 h, evaluating the accumulation and metabolization of As and oxidative stress parameters, such as catalase (CAT), glutathione-S-transferase activities, total antioxidant competence, reduced glutathione (GSH), and lipid damage in the gills and digestive glands. Results revealed that low MP concentration disrupts the redox state of the digestive gland by a decrease in the antioxidant activity (CAT and total antioxidant capacity). GSH levels in the gills of animals exposed to MP (4 µg/L) alone and the combination of MP + As increased, concomitant with an increase in the percentage of toxic compounds, indicating the effect of MP on As metabolism. Although, few studies evaluated the effect of coexposure to MP + As by considering metabolization of metalloid in freshwater bivalve, our results revealed that exposure to MP reduced the metabolization capacity of As, favoring the accumulation of more toxic compounds besides the MP alone, which showed a pro-oxidant effect in L. fortunei.

8.
Environ Pollut ; 335: 122285, 2023 Oct 15.
Article En | MEDLINE | ID: mdl-37527758

Echinoderms play a crucial role in the functioning of marine ecosystems and due to their extensive distribution, rapid response, and the high sensitivity of their planktonic larvae to a large range of stressors, some species are widely used as biological indicators. In addition to sea urchins, sea cucumbers have recently been implemented in embryotoxicity bioassays showing high potential in ecotoxicological studies. However, the use of this species is still hindered by a lack of knowledge regarding their comparative responsiveness. The present study aimed to investigate the responsiveness of different echinoderm species to environmental pollution in order to develop their integration in batteries of ecotoxicological bioassays. To this end, the embryos of two sea urchins (Paracentrotus lividus and Arbacia lixula) and two sea cucumbers (Holothuria polii and Holothuria tubulosa) were incubated with inorganic and organic toxicants (cadmium, copper, mercury, lead, sodium dodecyl sulphate and 4-n-Nonhyphenol) and elutriates from contaminated marine sediments, chosen as a case study model. The results obtained, expressed through the percentage of abnormal embryos and Integrative Toxicity Indices (ITI), indicated species-specific sensitivities to pollutants, with comparable and correlated responsiveness between sea urchins and sea cucumbers. More specifically, sea cucumber larvae exposed to elutriates appear to be more sensitive than sea urchins, especially when incubated with samples containing trace metals, PCB and TBT. These results indicate that toxic responses in embryos exposed to environmental matrices are probably modulated by interactions between different variables, including additive, synergistic and antagonistic effects. These findings suggest that performing a larval test using different echinoderm classes can integrate the interactive effects of bioavailable fraction of contaminants on various levels, providing sensitive, representative and all year-round batteries of bioassays to apply in ecotoxicological studies.


Paracentrotus , Sea Cucumbers , Animals , Environmental Biomarkers , Larva , Ecosystem , Sea Urchins , Environmental Pollution
9.
Mar Pollut Bull ; 191: 114912, 2023 Jun.
Article En | MEDLINE | ID: mdl-37080020

The present work compares microplastics (MPs) contamination in two charismatic crustaceans: European spiny lobster Palinurus elephas and langoustine Nephrops norvegicus. Samples (P. elephas n = 14; N. norvegicus n = 15) were collected between 76 and 592 m depth, from four sites in west Sardinia, Italy. An extraction protocol was applied on stomachs and intestines, separately, and over 500 particles were further characterized through µFT-IR. We document 100 % occurrence in specimens from both species, with P. elephas being significantly more contaminated (9.1 ± 1.75 vs. 3.2 ± 0.45 MPs individual-1), ingesting larger MPs with different polymeric composition. The scavenging-based feeding strategy of both species could explain such exposure to MPs, mostly derived by single-use plastic. The overall results highlight that both species are clearly affected by plastic pollution, being valuable bioindicators and charismatic species that could thus represent excellent flagship species for raising awareness toward the global issue of plastic in the marine environment.


Palinuridae , Water Pollutants, Chemical , Animals , Microplastics , Plastics , Water Pollutants, Chemical/analysis , Nephropidae , Environmental Monitoring/methods
10.
Environ Res ; 227: 115745, 2023 06 15.
Article En | MEDLINE | ID: mdl-36972774

The sharp decrease in the cost of RNA-sequencing and the rapid improvement in computational analysis of eco-toxicogenomic data have brought new insights into the adverse effects of chemicals on aquatic organisms. Yet, transcriptomics is generally applied qualitatively in environmental risk assessments, hampering more effective exploitation of this evidence through multidisciplinary studies. In view of this limitation, a methodology is here presented to quantitatively elaborate transcriptional data in support to environmental risk assessment. The proposed methodology makes use of results from the application of Gene Set Enrichment Analysis to recent studies investigating the response of Mytilus galloprovincialis and Ruditapes philippinarum exposed to contaminants of emerging concern. The degree of changes in gene sets and the relevance of physiological reactions are integrated in the calculation of a hazard index. The outcome is then classified according to five hazard classes (from absent to severe), providing an evaluation of whole-transcriptome effects of chemical exposure. The application to experimental and simulated datasets proved that the method can effectively discriminate different levels of altered transcriptomic responses when compared to expert judgement (Spearman correlation coefficient of 0.96). A further application to data collected in two independent studies of Salmo trutta and Xenopus tropicalis exposed to contaminants confirmed the potential extension of the methodology to other aquatic species. This methodology can serve as a proof of concept for the integration of "genomic tools" in environmental risk assessment based on multidisciplinary investigations. To this end, the proposed transcriptomic hazard index can now be incorporated into quantitative Weight of Evidence approaches and weighed, with results from other types of analysis, to elucidate the role of chemicals in adverse ecological effects.


Mytilus , Transcriptome , Animals , Gene Expression Profiling/methods , Mytilus/genetics , Risk Assessment/methods
11.
Environ Sci Technol ; 57(9): 3602-3611, 2023 03 07.
Article En | MEDLINE | ID: mdl-36826516

Pharmaceutical deltamethrin (Alpha Max), used as delousing treatments in aquaculture, has raised concerns due to possible negative impacts on the marine environment. A novel approach combining different scientific disciplines has addressed this topic. Acute (mortality) and sublethal effects (i.e., fitness, neurological, immunological, and oxidative responses) of exposure of northern shrimp (Pandalus borealis) were studied in laboratory experiments. Passive water sampling combined with sediment analyses revealed environmental concentrations. Finally, dispersal modeling was performed to predict environmental concentrations. Ecotoxicological analyses showed mortality in shrimp after 1 h of exposure to 2 ng L-1 (1000-fold dilution of treatment dose), revealing a high sensitivity to deltamethrin. Sublethal effects included induction of acetylcholinesterase and acyl CoA oxidase activities and oxidative impairment, which may be linked to neurotoxic responses. Field concentrations of 10-200 ng L-1 in water (100 m from the pens) and

Pandalidae , Water Pollutants, Chemical , Animals , Acetylcholinesterase/pharmacology , Aquaculture , Water , Water Pollutants, Chemical/toxicity
12.
Environ Int ; 171: 107733, 2023 01.
Article En | MEDLINE | ID: mdl-36628858

Cigarette butts (CBs), one of the most common litter items found on beaches, represent a still unexplored environmental hazard. This study aimed at a multidisciplinary characterization of their toxicological risks on marine organisms integrating chemical analyses of released compounds with a wide panel of biological responses, such as ecotoxicological bioassays on species of different trophic positions, molecular responses in an ex vivo model (Precision-Cut Tissue Slices, PCTS of mussels digestive glands), bioavailability and cellular biomarkers in mussels exposed to CBs in laboratory experiments. Trace metals, aliphatic and polycyclic aromatic hydrocarbons, nicotine and cotinine were released in artificial seawater after 24 h which determined a significant inhibition of bacterial bioluminescence, oyster embryo development and growth in different algal species. Modulation of peroxisomal proliferation and antioxidant gene expression was observed in mussels PCTS, while the in vivo exposure determined accumulation of chemicals and significant alterations of immune system, antioxidant and neurotoxic responses, peroxisomal proliferation and genotoxic damage. Using a quantitative Weight of Evidence model, the risks of CBs to the marine environment were summarized, highlighting the importance of integrating chemical analyses, batteries of ecotoxicological bioassays, molecular and cellular biomarkers to assess the impact of these hazardous materials on marine environment.


Bivalvia , Tobacco Products , Water Pollutants, Chemical , Animals , Aquatic Organisms/metabolism , Antioxidants/analysis , Water Pollutants, Chemical/analysis , Biomarkers/metabolism , Environmental Monitoring
13.
Sci Total Environ ; 860: 160465, 2023 Feb 20.
Article En | MEDLINE | ID: mdl-36427727

Unravelling the adverse outcomes of pharmaceuticals mixture represents a research priority to characterize the risk for marine ecosystems. The present study investigated, for the first time, the interactions between two of the most largely detected pharmaceuticals in marine species: carbamazepine (CBZ) and valsartan (VAL), elucidating mechanisms that can modulate bioaccumulation, excretion and the onset of toxicity. Mytilus galloprovincialis were exposed to environmental levels of CBZ and VAL dosed alone or in combination: measurement of drug bioaccumulation was integrated with changes in the whole transcriptome and responsiveness of various biochemical and cellular biomarkers. Interactive and competing mechanisms between tested drugs were revealed by the much higher CBZ accumulation in mussels exposed to this compound alone, while an opposite trend was observed for VAL. A complex network of responses was observed as variations of gene expression, functional effects on neurotransmission, cell cycle, immune responses and redox homeostasis. The elaboration of results through a quantitative Weight of Evidence model summarized a greater biological reactivity of CBZ compared to VAL and antagonistic interactions between these compounds, resulting in a reduced effect of the antiepileptic when combined with valsartan. Overall, new perspectives are highlighted for a more comprehensive risk assessment of environmental mixtures of pharmaceuticals.


Mytilus , Pharmaceutical Preparations , Water Pollutants, Chemical , Animals , Aquatic Organisms , Carbamazepine/toxicity , Carbamazepine/metabolism , Ecosystem , Mytilus/drug effects , Pharmaceutical Preparations/metabolism , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity , Valsartan/metabolism , Valsartan/toxicity
15.
Front Public Health ; 10: 968296, 2022.
Article En | MEDLINE | ID: mdl-36211646

In the last century, many Mediterranean coastal areas have been subjected to anthropogenic disturbances from industrial activities, uncontrolled landfills, shipyards, and high maritime traffic. The Augusta Bay (eastern Sicily, Italy) represents an example of a strongly impacted coastal environment with an elevated level of sediments contamination due to the presence of one of the largest European petrochemical plants, combined with an extensive commercial and military harbor. The most significant contaminants were represented by mercury (Hg) and hexachlorobenzene (HCB), derived from a former chlor-alkali plant, and other organic compounds like polycyclic aromatic hydrocarbons (PAHs) and polychlorobiphenyls (PCBs). Since the 1970s, Augusta Bay has become internationally recognized as a contaminated marine environment, although very little information is available regarding the temporal trend of contaminants bioavailability and biological impacts on aquatic organisms. In this study, the Hg and HCB concentrations were investigated over 10 years (from 2003 to 2013) in sediments and invertebrate and vertebrate organisms; these two contaminants' ecotoxicity was further evaluated at a biochemical and cellular level by analyzing the induction of organic biotransformation processes and DNA damages. The results showed high concentrations of Hg and HCB in sediments and their strong bioaccumulation in different species with significantly higher values than those measured in reference sites. This trend was paralleled by increased micronuclei frequency (DNA damage biomarker) and activity of the biotransformation system. While levels of chemicals in sediments remained elevated during the time course, their bioavailability and biological effects showed a gradual decrease after 2003, when the chlor-alkali plant was closed. Environmental persistence of Hg and HCB availability facilitates their bioaccumulation and affects the health status of marine organisms, with possible implications for environmental risk, pollutants transfer, and human health.


Mercury , Polychlorinated Biphenyls , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Alkalies , Aquatic Organisms , Bays , Biological Availability , Environmental Monitoring/methods , Geologic Sediments/chemistry , Hexachlorobenzene , Humans , Mercury/analysis , Mercury/toxicity , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/toxicity
16.
Mar Pollut Bull ; 184: 114133, 2022 Nov.
Article En | MEDLINE | ID: mdl-36150223

The development of monitoring programs based on bioindicators is crucial for assessing the impact of microplastic ingestion on marine organisms. This study presents results from an Italian pilot action aimed at investigating the suitability of a monitoring strategy based on a multispecies approach. The benthic-feeder Mullus barbatus, the demersal species Merluccius merluccius, and the pelagic-feeder species of the genus Scomber were used to assess the environmental contamination by microplastics in three different marine areas, namely Ancona (Adriatic Sea), Anzio (Tyrrhenian Sea), and Oristano (Western Sardinia). Microplastic ingestion frequencies were higher in samples from Anzio (26.7 %) and Ancona (25.0 %) than Oristano (14.4 %), suggesting a relationship between microplastic bioavailability and the proximity to urban settlements and river flows. Furthermore, microplastic ingestion was affected by the feeding habits of the examined species. The detected differences reinforce the hypothesis that a multispecies approach is needed to evaluate microplastic ingestion by marine animals.


Perciformes , Water Pollutants, Chemical , Animals , Microplastics , Plastics , Environmental Biomarkers , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis , Fishes , Eating
17.
Mar Pollut Bull ; 181: 113916, 2022 Aug.
Article En | MEDLINE | ID: mdl-35810651

Geographical and temporal differences of microplastic occurrence were documented in water and fish collected in 2017 and 2019 from the Giglio Island (North Tyrrhenian Sea) close to the area where the Costa Concordia sank in January 2012. Results on water samples showed a site-dependent difference, suggesting the role of surface current dynamics in the microplastic local distribution, while tested Neuston nets (200 µm and 330 µm mesh size) did not influence microplastic retention efficiency. Fish exhibited in 2019 a higher frequency of specimens positive to microplastic ingestion with respect to 2017, with an occurrence higher than those typically observed in other Mediterranean areas. Both in water and fish, fragments were the dominating shape, polypropylene and polyethylene were the prevalent polymers, without particular difference between sites and years. This study highlights the importance of applying microplastic investigation in biotic and abiotic matrices for an effective monitoring of this pollution in the marine environment.


Microplastics , Water Pollutants, Chemical , Animals , Aquatic Organisms , Environmental Monitoring , Fishes , Plastics , Seawater , Water , Water Pollutants, Chemical/analysis
18.
Environ Pollut ; 300: 118970, 2022 May 01.
Article En | MEDLINE | ID: mdl-35143899

The increased frequency and intensity of short-term extreme warming phenomena have been associated to harsh biological and ecosystem outcomes (i.e., mass mortalities in marine organisms). Marine heatwaves (MHWs), occurring when seasonal temperature threshold is exceeded for at least 5 consecutive days, may reduce the tolerance of coastal species toward additional pressures, but interactions between such multiple stressors are virtually unexplored. The present study aimed to characterize in Mytilus galloprovincialis the influence of a simulated MHW scenario on the toxicological effects of the pharmaceutical carbamazepine (CBZ), ubiquitously detected in the marine environment and chosen as model compound for this relevant class of emerging contaminants. The bioaccumulation of CBZ and responsiveness of various biological parameters, including immune system, antioxidant status, lipid metabolism and cellular integrity, were analyzed in exposed mussels both during and after the end of the heatwave. MHW appeared to strongly modulate accumulation of CBZ, paralleled by weakened immunocompetence and onset of oxidative disturbance that finally evolved to cellular damages and lipid metabolism disorders. Elaboration of the overall results through a quantitative Weight of Evidence model, revealed the highest hazard in organisms exposed to both the stressors 10 days after the end of the heatwave, suggesting that MHWs could leave a footprint on the capability of mussels to counteract CBZ toxicity, thus affecting their vulnerability and predisposition to adverse effects toward multiple stressors.


Mytilus , Water Pollutants, Chemical , Animals , Carbamazepine/metabolism , Carbamazepine/toxicity , Ecosystem , Mytilus/metabolism , Oxidative Stress , Water Pollutants, Chemical/analysis
19.
Ann Rev Mar Sci ; 14: 105-128, 2022 01 03.
Article En | MEDLINE | ID: mdl-34425054

Environmental pharmaceuticals represent a threat of emerging concern for marine ecosystems. Widely distributed and bioaccumulated, these contaminants could provoke adverse effects on aquatic organisms through modes of action like those reported for target species. In contrast to pharmacological uses, organisms in field conditions are exposed to complex mixtures of compounds with similar, different, or even opposing therapeutic effects. This review summarizes current knowledge of the main cellular pathways modulated by the most common classes of environmental pharmaceuticals occurring in marine ecosystems and accumulated by nontarget species-including nonsteroidal anti-inflammatory drugs, psychiatric drugs, cardiovascular and lipid regulator agents, steroidal hormones, and antibiotics-and describes an intricate network of possible interactions with both synergistic and antagonistic effects on the same cellular targets and metabolic pathways. This complexity reveals the intrinsic limits of the single-chemical approach to predict the long-term consequences and future impact of pharmaceuticals at organismal, population, and community levels.


Pharmaceutical Preparations , Water Pollutants, Chemical , Aquatic Organisms , Ecosystem , Environmental Monitoring , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
20.
Evol Appl ; 14(12): 2864-2880, 2021 Dec.
Article En | MEDLINE | ID: mdl-34950234

Chronic exposure to pollutants affects natural populations, creating specific molecular and biochemical signatures. In the present study, we tested the hypothesis that chronic exposure to pollutants might have substantial effects on the Manila clam hologenome long after removal from contaminated sites. To reach this goal, a highly integrative approach was implemented, combining transcriptome, genetic and microbiota analyses with the evaluation of biochemical and histological profiles of the edible Manila clam Ruditapes philippinarum, as it was transplanted for 6 months from the polluted area of Porto Marghera (PM) to the clean area of Chioggia (Venice lagoon, Italy). One month post-transplantation, PM clams showed several modifications to its resident microbiota, including an overrepresentation of the opportunistic pathogen Arcobacter spp. This may be related to the upregulation of several immune genes in the PM clams, potentially representing a host response to the increased abundance of deleterious bacteria. Six months after transplantation, PM clams demonstrated a lower ability to respond to environmental/physiological stressors related to the summer season, and the hepatopancreas-associated microbiota still showed different compositions among PM and CH clams. This study confirms that different stressors have predictable effects in clams at different biological levels and demonstrates that chronic exposure to pollutants leads to long-lasting effects on the animal hologenome. In addition, no genetic differentiation between samples from the two areas was detected, confirming that PM and CH clams belong to a single population. Overall, the obtained responses were largely reversible and potentially related to phenotypic plasticity rather than genetic adaptation. The results here presented will be functional for the assessment of the environmental risk imposed by chemicals on an economically important bivalve species.

...